Lesson 32. Double Integrals in Polar Coordinates

1 Review

1.1 Polar coordinates

• **Polar coordinate system**: specify points in the xy-plane as (r, θ) where

$$\circ$$
 $r =$

$$\circ$$
 $\theta =$

Example 1. Sketch the region in the plane consisting of points whose polar coordinates satisfy: $1 \le r \le 3$, $\pi/6 \le \theta \le 5\pi/6$.

1.2 Polar curves

• The **graph of a polar equation** $F(r, \theta) = 0$ consists of all points that can be represented by some polar coordinates (r, θ) that satisfy the equation

Example 2. Sketch the curve with polar equation $r = 2 \cos \theta$.

1.3 Correspondence between polar and Cartesian coordinates

Example 3. Find a Cartesian equation for the curve $r = 2\cos\theta$.

Example 4. Find a polar equation for the curve represented by the Cartesian equation $4y^2 = x^2$.

2 Changing to polar coordinates in a double integral

- Idea:
 - Some regions are hard to express in terms of rectangular coordinates, but easily described using polar coordinates

(a)
$$R = \{(r, \theta) \mid 0 \le r \le 1, 0 \le \theta \le 2\pi\}$$

(b)
$$R = \{(r, \theta) \mid 1 \le r \le 2, 0 \le \theta \le \pi\}$$

• How do we integrate in polar coordinates? Divide regions into polar subrectangles

• If *D* is a polar region of the form

$$D = \{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_1(\theta) \leq r \leq h_2(\theta)\}$$

then

- Substitute $x = r \cos \theta$ and $y = r \sin \theta$ into f(x, y)
- Replace dA with $r dr d\theta$
- Don't forget the additional factor r!

ample 6. Evaluate Ad $x^2 + y^2 = 4$	aluate $\iint_D (x^2 + y^2)$ and the lines $x = 0$	dA, where D is the following and $y = x$.	he region in the fir	st quadrant boun	ded by the circles x^2 +
a mple 7. Fir	nd the volume of th	ne solid bounded	by the plane $z = 0$	and the parabol	oid $z = 1 - x^2 - y^2$.
a mple 7. Fir	nd the volume of th	ne solid bounded	by the plane $z = 0$	and the parabol	oid $z = 1 - x^2 - y^2$.
x ample 7. Fir	nd the volume of th	ne solid bounded	by the plane $z = 0$	and the parabol	oid $z = 1 - x^2 - y^2$.
x ample 7. Fir	nd the volume of th	ne solid bounded	by the plane $z = 0$	and the parabol	oid $z = 1 - x^2 - y^2$.
xample 7. Fir	nd the volume of th	ne solid bounded	by the plane $z = 0$	and the parabol	oid $z = 1 - x^2 - y^2$.
k ample 7. Fir	nd the volume of th	ne solid bounded	by the plane $z = 0$	and the parabol	oid $z = 1 - x^2 - y^2$.
xample 7. Fir	nd the volume of th	ne solid bounded	by the plane $z = 0$	and the parabol	oid $z = 1 - x^2 - y^2$.
xample 7. Fir	nd the volume of th	ne solid bounded	by the plane $z = 0$	and the parabol	oid $z = 1 - x^2 - y^2$.
xample 7. Fir	nd the volume of th	ne solid bounded	by the plane $z = 0$	and the parabol	oid $z = 1 - x^2 - y^2$.
c ample 7. Fir	nd the volume of th	ne solid bounded	by the plane $z = 0$	and the parabol	oid $z = 1 - x^2 - y^2$.