Lesson 32. Double Integrals in Polar Coordinates

1 Review

1.1 Polar coordinates

- Polar coordinate system: specify points in the $x y$-plane as (r, θ) where
- $r=$
- $\theta=$

Example 1. Sketch the region in the plane consisting of points whose polar coordinates satsify: $1 \leq r \leq 3$, $\pi / 6 \leq \theta \leq 5 \pi / 6$.

1.2 Polar curves

- The graph of a polar equation $F(r, \theta)=0$ consists of all points that can be represented by some polar coordinates (r, θ) that satisfy the equation

Example 2. Sketch the curve with polar equation $r=$ $2 \cos \theta$.

1.3 Correspondence between polar and Cartesian coordinates

- $x=$
- $y=$
-
-

Example 3. Find a Cartesian equation for the curve $r=2 \cos \theta$.

Example 4. Find a polar equation for the curve represented by the Cartesian equation $4 y^{2}=x^{2}$.

2 Changing to polar coordinates in a double integral

- Idea:
- Some regions are hard to express in terms of rectangular coordinates, but easily described using polar coordinates

(a) $R=\{(r, \theta) \mid 0 \leqslant r \leqslant 1,0 \leqslant \theta \leqslant 2 \pi\}$
(b) $R=\{(r, \theta) \mid 1 \leqslant r \leqslant 2,0 \leqslant \theta \leqslant \pi\}$
- How do we integrate in polar coordinates? Divide regions into polar subrectangles

- If D is a polar region of the form

$$
D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}
$$

then

- Substitute $x=r \cos \theta$ and $y=r \sin \theta$ into $f(x, y)$
- Replace $d A$ with $r d r d \theta$

- Don't forget the additional factor r !

Example 5. Evaluate $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \sin \left(x^{2}+y^{2}\right) d y d x$ by converting to polar coordinates.

Example 6. Evaluate $\iint_{D}\left(x^{2}+y^{2}\right) d A$, where D is the region in the first quadrant bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ and the lines $x=0$ and $y=x$.

Example 7. Find the volume of the solid bounded by the plane $z=0$ and the paraboloid $z=1-x^{2}-y^{2}$.

